Linear Algebra¶
Linear algebra module for internal usage: ezdxf.math.linalg
Functions¶
- ezdxf.math.linalg.tridiagonal_vector_solver(A: List[List[float]], B: Iterable[float]) list[float] ¶
Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as vector B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.
If an
ZeroDivisionError
exception occurs, the equation system can possibly be solved byBandedMatrixLU(A, 1, 1).solve_vector(B)
- Parameters:
A –
diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]
[[b0, c0, 0, 0, ...], [a1, b1, c1, 0, ...], [0, a2, b2, c2, ...], ... ]
B – iterable of floats [[b1, b1, …, bn]
- Returns:
list of floats
- Raises:
ZeroDivisionError – singular matrix
- ezdxf.math.linalg.tridiagonal_matrix_solver(A: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]], B: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]]) Matrix ¶
Solves the linear equation system given by a tri-diagonal nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B. Matrix A is diagonal matrix defined by 3 diagonals [-1 (a), 0 (b), +1 (c)].
Note: a0 is not used but has to be present, cn-1 is also not used and must not be present.
If an
ZeroDivisionError
exception occurs, the equation system can possibly be solved byBandedMatrixLU(A, 1, 1).solve_vector(B)
- Parameters:
A –
diagonal matrix [[a0..an-1], [b0..bn-1], [c0..cn-1]]
[[b0, c0, 0, 0, ...], [a1, b1, c1, 0, ...], [0, a2, b2, c2, ...], ... ]
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
- Returns:
matrix as
Matrix
object- Raises:
ZeroDivisionError – singular matrix
- ezdxf.math.linalg.banded_matrix(A: Matrix, check_all=True) tuple[Matrix, int, int] ¶
Transform matrix A into a compact banded matrix representation. Returns compact representation as
Matrix
object and lower- and upper band count m1 and m2.- Parameters:
A – input
Matrix
check_all – check all diagonals if
True
or abort testing after first all zero diagonal ifFalse
.
Matrix Class¶
- class ezdxf.math.linalg.Matrix(items: Any = None, shape: Tuple[int, int] | None = None, matrix: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]] | None = None)¶
Basic matrix implementation based
numpy.ndarray
. Matrix data is stored in row major order, this means in a list of rows, where each row is a list of floats.Initialization:
Matrix(shape=(rows, cols)) … new matrix filled with zeros
Matrix(matrix[, shape=(rows, cols)]) … from copy of matrix and optional reshape
Matrix([[row_0], [row_1], …, [row_n]]) … from Iterable[Iterable[float]]
Matrix([a1, a2, …, an], shape=(rows, cols)) … from Iterable[float] and shape
Changed in version 1.2: Implementation based on
numpy.ndarray
.- matrix¶
matrix data as
numpy.ndarray
- nrows¶
Count of matrix rows.
- ncols¶
Count of matrix columns.
- shape¶
Shape of matrix as (n, m) tuple for n rows and m columns.
- append_col(items: Sequence[float]) None ¶
Append a column to the matrix.
- append_row(items: Sequence[float]) None ¶
Append a row to the matrix.
- col(index: int) list[float] ¶
Return column index as list of floats.
- cols() list[list[float]] ¶
Return a list of all columns.
- determinant() float ¶
Returns determinant of matrix, raises
ZeroDivisionError
if matrix is singular.
- diag(index: int) list[float] ¶
Returns diagonal index as list of floats.
An index of 0 specifies the main diagonal, negative values specifies diagonals below the main diagonal and positive values specifies diagonals above the main diagonal.
e.g. given a 4x4 matrix:
index 0 is [00, 11, 22, 33],
index -1 is [10, 21, 32] and
index +1 is [01, 12, 23]
- classmethod identity(shape: Tuple[int, int]) Matrix ¶
Returns the identity matrix for configuration shape.
- isclose(other: object) bool ¶
Returns
True
if matrices are close to equal, tolerance value for comparison is adjustable by the attributeMatrix.abs_tol
.
- static reshape(items: Iterable[float], shape: Tuple[int, int]) Matrix ¶
Returns a new matrix for iterable items in the configuration of shape.
- row(index: int) list[float] ¶
Returns row index as list of floats.
- rows() list[list[float]] ¶
Return a list of all rows.
- set_col(index: int, items: float | Iterable[float] = 1.0) None ¶
Set column values to a fixed value or from an iterable of floats.
- set_diag(index: int = 0, items: float | Iterable[float] = 1.0) None ¶
Set diagonal values to a fixed value or from an iterable of floats.
An index of
0
specifies the main diagonal, negative values specifies diagonals below the main diagonal and positive values specifies diagonals above the main diagonal.e.g. given a 4x4 matrix: index
0
is [00, 11, 22, 33], index-1
is [10, 21, 32] and index+1
is [01, 12, 23]
- set_row(index: int, items: float | Iterable[float] = 1.0) None ¶
Set row values to a fixed value or from an iterable of floats.
- __getitem__(item: tuple[int, int]) float ¶
Get value by (row, col) index tuple, fancy slicing as known from numpy is not supported.
- __setitem__(item: tuple[int, int], value: float)¶
Set value by (row, col) index tuple, fancy slicing as known from numpy is not supported.
- __eq__(other: object) bool ¶
Returns
True
if matrices are equal.
- __add__(other: Matrix | float) Matrix ¶
Matrix addition by another matrix or a float, returns a new matrix.
NumpySolver¶
- class ezdxf.math.linalg.NumpySolver(A: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]])¶
Replaces in v1.2 the
LUDecomposition
solver.- solve_vector(B: Iterable[float]) list[float] ¶
Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as vector B with n elements.
- Parameters:
B – vector [b1, b2, …, bn]
- Raises:
numpy.linalg.LinAlgError – singular matrix
- solve_matrix(B: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]]) Matrix ¶
Solves the linear equation system given by the nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B.
- Parameters:
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
- Raises:
numpy.linalg.LinAlgError – singular matrix
BandedMatrixLU Class¶
- class ezdxf.math.linalg.BandedMatrixLU(A: Matrix, m1: int, m2: int)¶
Represents a LU decomposition of a compact banded matrix.
- upper¶
Upper triangle
- lower¶
Lower triangle
- m1¶
Lower band count, excluding main matrix diagonal
- m2¶
Upper band count, excluding main matrix diagonal
- index¶
Swapped indices
- nrows¶
Count of matrix rows.
- solve_vector(B: Iterable[float]) list[float] ¶
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as vector B with n elements.
- Parameters:
B – vector [b1, b2, …, bn]
- Returns:
vector as list of floats
- solve_matrix(B: List[List[float]] | ndarray[tuple[int, ...], dtype[float64]]) Matrix ¶
Solves the linear equation system given by the banded nxn Matrix A . x = B, right-hand side quantities as nxm Matrix B.
- Parameters:
B – matrix [[b11, b12, …, b1m], [b21, b22, …, b2m], … [bn1, bn2, …, bnm]]
- Returns:
matrix as
Matrix
object